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The motion of an initially quiescent shallow layer of fluid within an impulsively tilted
flume is modelled using the nonlinear shallow water equations. Analytical solutions
for the two-dimensional flow are constructed using the method of characteristics
and, in regions where neither of the characteristic variables is constant, by adopting
hodograph variables and using the Riemann construction for the solution. These
solutions reveal that the motion is strongly influenced by the impermeable endwalls
of the flume. They show that discontinuous solutions emerge after some period
following the initiation of the flow and that for sufficiently long flumes there is a
moving interface between wetted and dry regions. Using the hodograph variables
we are able to track the evolution of the flow analytically. After the discontinuities
develop, we also calculate the velocity and height fields by using jump conditions to
express conservation of mass and momentum across the shock and thus we show
how the hydraulic jump moves within the domain and how its magnitude grows. In
addition to providing the behaviour of the flow in this physical scenario, this unsteady
solution also provides an important test case for numerical algorithms designed to
integrate the shallow water equations.

1. Introduction
Liquid sloshing is a significant problem in the transportation of fuels and for many

marine applications. The induced fluid motion can affect the dynamics and stability of
the transporting vessel and the fluid impacts place significant loads on the containing
structure (see, for example, Faltinsen, Landrini & Greco 2004). Additionally in heavy
seas, a ship may receive relatively large volumes of seawater on its deck. This
‘green’ water may then slosh around the deck at relatively high velocities, potentially
causing damage to equipment and structures (Lee, Zhou & Cao 2002). The surface
deformation of the fluid layer is particularly violent when the layer is relatively
shallow. In this scenario the amplitude of the wave motion may become comparable
with the fluid depth and hence the dynamics are strongly nonlinear (Huang & Hsiung
1996). Furthermore steep and broken waves form, leading to hydraulic jumps, which
translate throughout the domain. Such motions were documented in experiments by
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Verhagen & van Wijngaarden (1965) and these bores may lead to high, but localized,
impact pressures on the containing vessel.

Shallow fluid motion has often been modelled by the nonlinear shallow water
equations [NSWE] (see, for example, Peregrine 1972). These are based upon the flow
being predominantly parallel to the underlying boundary and thus fluid accelerations
perpendicular to the boundary are negligible. This system of equations, which
expresses mass and momentum conservation, has been applied widely to river and
coastal flows (Peregrine 1972; Whitham 1974) as well as fluid sloshing problems
(Armenio & Rocca 1996). Key features of the equations are that they model nonlinear
wave motions, they may exhibit an unsteady interface between wetted and dry regions
and, through discontinuous solutions (shocks), they capture the motion of the broken
waves. There have been a number of algorithms proposed to compute the solutions
numerically (see, for example, Leveque 2002), and the comparison of a range of
solvers for one-dimensional unsteady flow presented by Zoppou & Roberts (2003).
There are some tough challenges in computing these numerical solutions accurately
and it is vital that results are validated by comparison with analytical solutions. The
development of such a non-trivial test case is one of the outcomes of this study.

This work studies the impulsive motion of initially quiescent fluid over an inclined
plane: we consider the flow of a shallow layer within a rigid rectangular cross-section
flume that is tilted at some instant to generate an unsteady and spatially varying flow.
This configuration provides insight to the early stages of a thin film of water sloshing
within the tank and could be compared directly to laboratory observations. Analytical
solutions of the nonlinear shallow water equations over an inclined boundary are
relatively rare: Carrier & Greenspan (1958) found nonlinear, standing waves on a
sloping beach, while Shen & Meyer (1963) developed a model of the run-up of a
broken wave on a planar beach. More recently, Peregrine & Williams (2001) have
generalized this analysis to calculate the overtopping that occurs if the flow is on
a truncated beach and Pritchard, Guard & Baldock (2008) have calculated swash
run-up and run-down on a planar beach. In this contribution, we demonstrate below
that the presence of the endwalls of the flume adds significant complexity to the types
of fluid motion that may be generated. In particular, we show that discontinuities
develop at an interior location after a certain period following initiation, but that
nevertheless we can calculate the position and magnitude of these shocks. Additionally
we show that a moving interface forms between the wetted and dry regions in the
flume.

The solutions we develop in this study are derived using analytical techniques
that exploit the characteristic structure of the nonlinear shallow water equations.
In certain regions where one of the characteristic variables is constant, we are
able to track simply the evolution along characteristic curves. In regions where both
characteristic variables vary we interchange the dependent and independent variables,
a transformation that linearizes the governing equations. Thereafter we construct the
solution using Riemann’s method. This technique is described by Garabedian (1986)
and has been recently used by Hogg (2006), Ancey et al. (2008) and Pritchard et al.
(2008) to study frictionless inertial flows and by Kerswell (2005) to study Coulombic
granular flows. As noted above, shallow flows up inclined boundaries have been
modelled by Shen & Meyer (1963) and Peregrine & Williams (2001): both of these
studies treated flows within unbounded domains, with idealized initial conditions, and
developed solutions that did not form internal bores and featured a moving shoreline
that progressed up the inclined plane before retreating offshore. In this study we show
that the endwalls of the flume do influence the motion rather strongly and lead to



The early stages of shallow flows in an inclined flume 287

h0

L*

x*

g

0

θ

Figure 1. Initial configuration of the problem.

more complicated motions (including bores), for which the construct of the solutions
require more sophisticated mathematical techniques.

The paper is structured as follows. We formulate the problem in § 2, identify the key
dimensionless parameter, which is proportional to the length of the flume and present
the governing equations in hodograph form. In § 3, we develop solutions for the
motion at early times, identifying regions within which the characteristic variables are
constant and varying, and we demonstrate how to construct the analytical solution
using the method of characteristics and the Riemann representation of the flow.
The latter is possible because under the hodograph transformation, the governing
equations become linear. We also show when the techniques fail, potentially leading
to multivalued regions, which are resolved by the introduction of discontinuous
solutions. We show how to track the evolution of the discontinuous solutions in § 4
and we present some typical results. Finally, a summary and some conclusions are
given in § 5.

2. Formulation of the problem
We consider a rectangular tank containing a shallow layer of water at rest, initially

lying horizontally. The tank is suddenly tilted to generate a gravity-driven flow (see
figure 1). Provided the layer is sufficiently shallow so that the ensuing motion is
predominantly parallel with the underlying boundary and the pressure is hydrostatic,
then the shallow water equations can be used to model the flow (Peregrine 1972).
Aligning the x-axis with the direction along the tank, the following dimensional
equations (starred variables) model the system (for further details, see Peregrine &
Williams 2001):

∂d∗

∂t∗ +
∂

∂x∗ (d∗u∗) = 0, (2.1)

∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + g cos θ
∂d∗

∂x∗ = −g sin θ. (2.2)

In these equations, d∗ is the total water depth, u∗ is the ‘onshore’ velocity, g is
the gravitational acceleration and θ is the angle between the base of the tank
and the horizontal direction. We choose a frame of reference in which the origin
is at the left lower corner of the tank; the left wall of the tank is then located
at x = 0, while the right one is at x∗ = L∗. Finally, we assume that the tank is
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instantaneously tilted at t∗ = 0 and we consider the following initial configuration:
d∗ = constant= h0 and u∗ ≡ 0 (see figure 1). This initial condition, although in common
with previous studies in this geometry, is idealized because we assume that there is no
deformation of the free surface due to centrifugal accelerations, or other processes,
during the tilting of the flume; essentially we require that there is no appreciable
motion during the tilting, but that centrifugal accelerations also remain negligible.
Denoting the time scale for tilting by T , there is no appreciable motion due to
gravitational acceleration if T � t0 ≡ (h0 cos θ/g)1/2/ sin θ . Additionally we require
that T is not so short that significant centrifugal accelerations develop: this requires
that T � tr ≡ L∗θ/(gh0 cos θ)1/2. Hence the regime within which the initial condition
is accurate certainly demands that tr � t0 and hence when the inclination is small
(θ � 1), this leads to θ2 � h0/L

∗.
We can make system (2.1) dimensionless using the following scales:

x0 =
A

sin θ
, t0 =

1

sin θ

√
A

g
, u0 =

√
gA, d0 =

A

cos θ
, (2.3)

in which A is a proper vertical length. We choose A= h0 cos θ so that we obtain
d0 = h0. The dimensionless system is then given by

∂d

∂t
+

∂

∂x
(d u) = 0, (2.4)

∂u

∂t
+ u

∂u

∂x
+

∂d

∂x
= −1. (2.5)

Using (2.3) we find the sole residual dimensionless parameter L that measures the
length of the inclined tank relative to the initial fluid depth and the inclination of the
flume, and is given by

L =
L∗

x0

≡ tan θ
L∗

h0

. (2.6)

It is noteworthy that under the scalings of (2.3), L emerges as the ratio of the
flume inclination (tan θ) to the shallowness parameter (h0/L

∗). Alternatively it can
be viewed as the ratio of the two vertical length scales, L∗ sin θ and h0 cos θ . We will
show below that the magnitude of L determines the structure of the solutions and the
locations at which discontinuous solutions first form. System (2.4) can be rewritten
in characteristic form as follows:

α ≡ u + t + 2c = constant along curves
dx

dt
= u + c, (2.7a)

β ≡ u + t − 2c = constant along curves
dx

dt
= u − c, (2.7b)

where c =
√

d and α and β are the characteristic variables (Whitham 1974). It is
straightforward to show that

u =
α + β

2
− t and c =

α − β

4
. (2.8)
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By adopting α and β as the independent variables instead of x and t (the hodograph
transformation; Garabedian 1986), we find that (2.7a) and (2.7b) become

∂x

∂β
=

(
3 α + β

4
− t

)
∂t

∂β
along curves such that α = constant, (2.9a)

∂x

∂α
=

(
α + 3 β

4
− t

)
∂t

∂α
along curves such that β = constant. (2.9b)

This transformation is possible provided the Jacobian, J =(∂x/∂β)(∂t/∂α) −
(∂x/∂α)(∂t/∂β) is finite and non-zero. Combining together (2.9a) and (2.9b), we
establish

∂2t

∂α∂β
=

3

2(α − β)

(
∂t

∂α
− ∂t

∂β

)
. (2.10)

We note that in terms of these hodograph variables, the nonlinear governing equations
have become linear (Garabedian 1986; Hogg 2006) and that this will enable some of
the analysis developed below.

3. The early stages solution
Before describing the method for integrating this problem, we first need to define the

initial and boundary conditions for the configuration under examination (see figure 1)
and introduce some notations. In terms of dimensionless variables, we have the initial
condition d = 1 and u = 0 for 0 � x � L at t = 0, while the boundary conditions
represent the impermeability of the endwalls of the tank and are given by u =0 at
x = 0 and x = L. Generally there could exist a specific instant t

(0)
N when the water

ceases to wet the right wall of the tank and a front curve xN = xN (t) is generated.
Then, we define the front curve xN as the curve separating the wet part of the tank
bottom from the dry part. At the front we have the kinematic conditions ẋN = u and
c = 0. Now, using the definition of xN together with the definitions of α and β , we
can rewrite the kinematic condition as ẋN = α − t .

Given these conditions, we can solve the problem during the earliest time instants.
We find the following regions in the (x, t)-plane: a constant state region U1 within
which α and β are constant, two simple wave regions S1, S2 within which one of α

and β remains constant and two complex wave regions C1 and C2 within which α

and β both vary (see figure 2). The boundaries between these region are demarked
by the curves δ1, γ1 and γ2, as explained below.

3.1. Region U1

In this region the characteristic variables are given by α = 2 and β = −2 and, therefore,
d = 1, u = − t . The α- and β-characteristic curves (hereinafter denoted by the symbols
γ and δ, respectively) are given by

γ : x(t) = x0 + t − t2

2
, δ : x(t) = x0 − t − t2

2
, with x0 ∈ [0, L]. (3.1)

Then region U1 is bounded by the characteristic curves γ1 and δ1, emanating from
x = 0 and x = L, respectively, and given by

γ1 : x(t) = t − t2

2
, δ1 : x(t) = L − t − t2

2
. (3.2)

These curves intersect at P1 = (x1, t1) = (L/2(1 − L/4), L/2).
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Figure 2. Sketch of regions U1, S1, S2, C1 and C2 and the characteristic curves (γ1, γ2 and δ1)
that divide them for L =1. Also shown is the point P1 = (x1, t1), where the characteristic curves
γ1 and δ1 intersect and the points A, B and D that will be used to construct the solution
within the region C1.

3.2. Region S1

Throughout this region β = −2, because all β-characteristics entering this region have
originated in U1. We start solving for the α-characteristics curves. From (2.7a), we
find

ẋ =
3 α

4
− 1

2
− t, (3.3)

and integrating we deduce that the α-characteristic curves are of the form

γ : x(t; α) = x0 +

(
3 α

4
− 1

2

)
(t − t0) − t2

2
+

t2
0

2
, (3.4)

where t0 and x0 are constants. Since all γ -curves travel from the rigid wall into the
region S1, we demand that x =0 and u =0 at t = t0. The former condition yields
x0 = 0, while from (2.8), the latter condition corresponds to t0 = α/2 − 1 and thus (3.4)
becomes

γ : x(t; α) =

(
3 α

4
− 1

2

) (
t + 1 − α

2

)
− t2

2
+

(α/2 − 1)2

2
. (3.5)

Now we calculate α(x, t) by extracting α from (3.5) to find

α(x, t) = 1 +
3

2
t ± 1

2

√
(t + 2)2 − 16 x. (3.6)

Since for x = 0 we want α to satisfy u =0 (that is, t = α/2 − 1), we have to choose the
positive root. Substituting this expression in (2.7b), we obtain the following for the
β-characteristic curves in the region S1:

δ : ẋ = − 5

8
(t + 2) +

1

8

√
(t + 2)2 − 16 x. (3.7)
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This may be integrated to yield the following implicit solution (see appendix A for
more details):

[
√

(t + 2)2 − 16x − 2(t + 2)]2[
√

(t + 2)2 − 16x + 3(t + 2)]3 = 29 (5t2 + 2)2, (3.8)

where the initial conditions are assigned along the curve γ1, that is, x = t2 − t2
2/2 for

0 � t2 � t1. It is possible to expand (3.8) in the neighbourhood of the point t = t2 to
get an explicit solution. For t2 < 2/3 we find (see appendix A)

x =
(t + 2)2

16
− 1

16

{
(2 − 3t2)

2 + 2(9t2 + 10)(t − t2)

+

[
(3t2 + 14)(27t2 + 14)

(2 − 3t2)2

]
(t − t2)

2

}
+ O

((
t − 2

3

)3
)

,

while for t2 = 2/3, we have

x =
(t + 2)2

16
− 2

(
t − 2

3

)
+

√
2

3

(
t − 2

3

)3/2

− 5

12

(
t − 2

3

)2

+ O((t − t2)
3). (3.9)

Thus it has become apparent that the value t2 = 2/3 seems to represent a special case
for solution (3.8). The reason may be revealed as follows: for the α-characteristics
given by (3.5), we have t0 = α/2 − 1 and we can rewrite (3.5) using the parameter t0
instead of α to get

γ : x(t; t0) =

(
3

2
t0 + 1

)
(t − t0) − t2

2
+

t2
0

2
. (3.10)

All these curves start travelling inside S1 from the rigid wall at t = t0. Note that their
‘steepness’ (3/2 t0 + 1) grows as t0 becomes larger and so there could be particular
values of t0 such that different γ -curves meet together. In this case the solution
becomes multivalued and this may be interpreted as breaking and subsequent shock
formation (see, for example, Whitham 1974). The condition for the coalescence of the
two γ -curves is that ∂x/∂t0 = 0. Thus we find that this occurs at

t =
2

3
(1 + 2t0). (3.11)

The expression in (3.11) gives the time t ≡ t(t0) at which an envelope of γ -curves
occurs. Inverting (3.11), we obtain t0 = t0(t); then, substituting such expression in
(3.10), we get the explicit expression of the envelope

x =
(t + 2)2

16
. (3.12)

In figure 3 we show the envelope path together with the full path of γ1. Such curves
delimit a multivalued region M between S1 and U1. In this figure we have assumed
L � 4/3 so that the curve δ1 does not intersect γ1 before the multivalued solutions
first arise. We are interested in the first instant, ts at which breaking occurs. Using
(3.11), we establish

ts = min
t0 ∈ [0,+∞)

[
2

3
( 1 + 2 t0 )

]
=

2

3
. (3.13)

This result explains why t2 = 2/3 is a special value for solution (3.8), because it marks
the start of the multivalued region M . Finally, substituting ts in (3.12), we obtain the
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Figure 3. Regions of the (x, t)-plane when L � 4/3. U1, S1 and M denote the uniform region
(α = 2, β = −2), the simple wave region (β = −2) and the region within which multivalued
solutions occur, respectively. The characteristic curve, γ1 is plotted upto Ps with a solid line
and is continued with a dotted line. The envelope of multivalued solutions is plotted with a
dot-dash line.

point Ps where breaking first occurs

Ps = ( xs, ts ) =

(
4

9
,

2

3

)
. (3.14)

Note that Ps lies on the curve γ1. The occurrence of multivaluedness occurs within S1

if ts < t1 and this implies that L > 4/3. However if L < 4/3 then ts > t1 and multiplicity
occurs within the region C1.

Before proceeding to the analysis of regions S2 and C1, it is useful to find the
solution for t as function of the characteristic variable invariants α and β . Since in
S1, β = −2, the solution may be denoted by t = t(α, −2). The first step is to compute
the α-derivative of (3.5)

dx

dα
=

(
3α

4
− 1

2
− t

)
dt

dα
+

3

4
t − α

2
+

1

2
. (3.15)

Then, using (2.9b), we find(α

2
+ 1

) dt

dα
= − (3 t + 2 − 2 α)

4
, (3.16)

which gives the following solution:

t(α, −2) =
2 α − 6

5
+

c0

(α + 2)3/2
, (3.17)

where c0 is a constant of integration. Note that we are integrating along the δ-curves
on which β = −2. Such curves start travelling inside S1 from the boundary curve γ1

where α = 2. Then, the initial condition is t(2, −2) = t2 and we immediately obtain

t(α, −2) =
2 α − 6

5
+ 8

(
t2 +

2

5

)
(α + 2)−3/2. (3.18)
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Finally, we can evaluate x(α, −2) using (2.9b) and the condition x(2, −2) = t2 − t2
2/2

x(α, −2) = − 3

100
(α + 2)2 − 32

25

(5t2 + 2)2

(α + 2)3
+

14

25

(5t2 + 2)

(α + 2)1/2
. (3.19)

These expressions will be used below in the evaluation of the solution within C1: in
particular we will employ the values of t(α, −2) emanating from t2 = t1 =L/2. It is
noteworthy that the multiplicity described above can be observed in these expressions:
both ∂t/∂α and ∂x/∂α vanish when α = 2 and t2 = 2/3.

3.3. Region S2

Throughout this region α = 2, because all of the α-characteristics entering this domain
have originated in U1 (see figure 2). Similarly to the analysis of the previous section,
we first find the paths of the β-characteristics. From (2.7b), we establish

ẋ =
1

2
+

3 β

4
− t, (3.20)

which may be integrated to obtain

δ : x(t; β) = x3 +

(
1

2
+

3 β

4

)
(t − t3) − t2

2
+

t2
3

2
. (3.21)

Since all β-characteristics travel from the rigid wall at the right-hand end of the tank,
into the region S2, we have x = L and u =0 at t = t3. Thus we deduce x3 = L and
from (2.8), the latter condition corresponds to t3 = 1 + β/2. Thus (3.21) becomes

δ : x(t; β) = L +

(
1

2
+

3 β

4

) (
t − 1 − β

2

)
− t2

2
+

(1 + β/2)2

2
. (3.22)

Now we can find β(x, t) by extracting β from (3.22). We find

β(x, t) = −1 +
3

2
t − 1

2

√
(2 − t)2 − 16 (x − L). (3.23)

Substituting such expression in (2.7a), we obtain

γ : ẋ =
5

4
− 5

8
t − 1

8

√
(2 − t)2 − 16 (x − L). (3.24)

This may be integrated to give the α-characteristic path in region S2. Following a
procedure similar to that applied in appendix A, we find an implicit solution for
(3.24). However, in this case it will be more useful to construct the solutions t(2, β)
and x(2, β). Similarly to the analysis used for region S1, we find that

t(2, β) =
6 + 2 β

5
+ 8

(
t4 − 2

5

)
(2 − β)−3/2, (3.25)

and

x(2, β) = L − 3

100
(2 − β)2 − 32

25

(5t4 − 2)2

(2 − β)3
− 14

25

(5t4 − 2)

(2 − β)1/2
, (3.26)

where t4 parameterizes the starting point of these α-characteristics on the curve δ1,
such that 0 � t4 � t1. The region S2 is bounded to the left in the (x, t)-plane by the
continuation of the curve γ1, which is the α-characteristic emanating from the origin.
This curve is given in parametric form by substituting t4 = t1 = L/2 into (3.25) and
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Figure 4. The front curve xN (thick solid line), the α-characteristic curves (thin solid lines)
and the β-characteristic curves (dotted lines) as functions of time inside the simple wave region
S2 for L = 6.

(3.26). Thus we find that γ reaches the rigid wall at the far right of the tank (x =L)
at β = 2 − (32 − 80t1)

2/5, which corresponds to times tw given by

tw = 2 − 23/5(2 − 5t1)
2/5. (3.27)

Note that if t1 > 2/5 and thus L > 4/5 then γ1 does not reach this endwall. Conversely
if L < 4/5, then after γ1 reaches the endwall, there is a complicated pattern of simple
and complex wave regions in the (x, t)-plane arising from the reflection of this
characteristic.

Finally we examine whether these solutions lead to a multivalued region. We rewrite
(3.22) as function of t3 only

δ : x(t; β) = L +

(
3 t3

2
− 1

)
(t − t3) − t2

2
+

t2
3

2
. (3.28)

As in region S1, the ‘steepness’ (3/2 t3 − 1) increases as t3 increases and following the
standard procedure of determining when ∂x/∂t3 = 0, we find that the envelope of the
δ-curves is given by

x(t) = L +
1

16
(t − 2)2 . (3.29)

This envelope lies outside of the tank and thus there is no multivalued region; rather
inside S2 there is a fan of β-characteristic curves.

We also note that inside S2, the flow depth is d = (α − β)2/16 = (2 − β)2/16 and,
thus, when β = 2, the depth vanishes and a front between the wet and dry regions, xN ,
is generated. The instant t

(0)
N at which the front starts to move is obtained using the

impermeability condition at the right rigid wall; we immediately find t
(0)
N = 1+β/2 = 2.

Thereafter the motion of xN is readily calculated since α = β =2 and thus we obtain

ẋN = α − t = 2 − t, ⇒ xN = L − 2 + 2t − t2

2
for t > 2. (3.30)

Figure 4 shows the front curve xN and the α- and β-characteristic curves for L =6,
noting that the plotted behaviour is typical for all tanks of sufficient length so that
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Figure 5. The height d(x, t) and velocity u(x, t), as functions of x, near the front of the
motion at t = 3 for L = 6.

the regions S2 and C1 remain distinct at t = 2 (i.e. L > 4/5). Profiles of the depth and
velocity fields close to the interface between the wetted and dry regions are plotted
in figure 5. Note that for this case L = 6 and at t = 3, the interface between the wet
and dry regions of the flume lies at xN (3) = 11/2.

3.4. Region C1

In this region it is no longer possible to solve the problem by simply integrating along
the characteristic curves, because both characteristic variables are changing. Thus a
more sophisticated method is required. We interchange dependent and independent
variables and thus seek solutions of the form t(α, β) and x(α, β). Furthermore
we introduce the Riemann function, B = B(a, b; α, β), which satisfies the partial
differential equation adjoint to (2.10) and given by

∂2B

∂a∂b
+

3

2 (a − b)

(
∂B

∂a
− ∂B

∂b

)
− 3 B

(a − b)2
= 0, (3.31)

subject to the boundary conditions

∂B

∂b
=

− 3 B

2 (a − b)
along a = α,

∂B

∂a
=

3 B

2 (a − b)
along b = β, B(α, β; α, β) = 1. (3.32)

For this partial differential equation, the Riemann function is given by Garabedian
(1986)

B(a, b; α, β) =
(a − b)3

(a − β)3/2 (α − b)3/2
F

[
3

2
,
3

2
; 1;

(a − α)(β − b)

(a − β)(α − b)

]
, (3.33)

where F is the hypergeometric function. Then the Riemann construction applies
to regular domains, D with boundaries ∂D in the (α, β)-hodograph plane (see
Garabedian 1986; Hogg 2006). Explicitly we require that∫

∂D

ω = 0, (3.34)
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where ω = −V da + Udb, and

V =
3 t B

2 (a − b)
+

B

2

∂t

∂a
− t

2

∂B

∂a
, (3.35a)

U = − 3 t B

2 (a − b)
+

B

2

∂t

∂b
− t

2

∂B

∂b
. (3.35b)

We are now in the position to solve the problem in region C1. We consider the
Riemann’s function B = B(a, b; α, β) and the square P1ADB in the hodograph plane
made up by segments of the characteristic curves and depicted in figure 2. The
coordinates of the points in the (α, β)-plane are

A = (α, −2), B = (2, β), D = (α, β) and P1 = (2, −2). (3.36)

The functions t(2, β) and t(α, −2) along the characteristics γ1 and δ1 are known
through (3.18) and (3.25), respectively, and therefore the only unknown variable is
t(α, β) at D. Applying Riemann’s method to the characteristic square and integrating
by parts, we get∫

P1B

ω =

∫ β

−2

U |
a=2 db =

1

2
[B(2, β; α, β) t(2, β) − B(2, −2; α, β) t(2, −2)]

−
∫ β

−2

t(2, b)

[
3 B

2(a − b)
+

∂B

∂b

] ∣∣∣∣
a=2

db, (3.37a)

∫
AP1

ω =

∫ α

2

V |
b=−2 da =

1

2
[B(α, −2; α, β) t(α, −2) − B(2, −2; α, β) t(2, −2)]

+

∫ α

2

t(a, −2)

[
3 B

2(a − b)
− ∂B

∂a

] ∣∣∣∣
b=−2

da, (3.37b)

which are known functions since t(2, β) and t(α, −2) along AP1 and P1B , respectively,
are known. Integrating by parts and using the boundary condition in (3.32), we also
have ∫

BD

ω = −
∫ α

2

V |
b=β

da = −1

2
[t(α, β) − B(2, β; α, β) t(2, β)] , (3.38a)∫

DA

ω = ,

∫ −2

β

U |
a=α

db =
1

2
[B(α, −2; α, β) t(α, −2) − t(α, β)] . (3.38b)

Combining together the previous results, we obtain

t(α, β) = B(2, β; α, β) t(2, β) + B(α, −2; α, β) t(α, −2) − B(2, −2; α, β) t(2, −2)

+

∫ α

2

t(a, −2)

[
3 B

2(a − b)
− ∂B

∂a

] ∣∣∣∣
b=−2

da −
∫ β

−2

t(2, b)

[
3 B

2(a − b)
+

∂B

∂b

] ∣∣∣∣
a=2

db.

(3.39)

Once t(α, β) is known, we can obtain x(α, β) from the relations in (2.9a, b). Here, we
give the solution for x(α, β) in the general case. We integrate (2.9a) between β0 and
β and (2.9b) between α0 and α (α0 and β0 are arbitrary starting points) and combine
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these results to obtain

x(α, β) = x(α0, β0) +
3 β + α

4
t(α, β) − 3 α0 + β0

4
t(α0, β0) +

α0 − β

2
t(α0, β)

− 1

4

[ ∫ α

α0

t(a, β) da +

∫ β

β0

t(α0, b) db

]
− t2(α, β)

2
+

t2(α0, β0)

2
, (3.40)

where t(α, β), t(α0, β), t(α0, β0) and x(α0, β0) are known.
The region C1 is bounded to the left in the (x, t)-plane by the α-characteristic γ2

emanating from the t-axis from the point at which the curve δ1 reaches x = 0 (see
figure 2). This reflection changes the nature of the solution, because while within C2

both α and β continue to vary, this region is bounded to the left by x = 0 at which
the rigid wall conditions demand that u =0 and t =α + β . In principle the solution
may be constructed using Riemann’s method, but this will not be pursued in this
paper, for which the focus is the initial evolution of the flow.

In figure 6 we show the analytical solutions for d and u at various fixed times and
L = 1, noting that the characteristic curve δ1 reaches x = 0 at t = 0.766. In figures 6(a)
and 6(b) t = 1/4 and the solutions spread over the regions S1, U1 and S2. In figures
6(c) and 6(d ) we choose the special case t =1/2 when the region U1 disappears and
the regions S1 and S2 touch each other at the point P1. Finally, in figures 6(e) and
6(f ) t = 2/3 and the solutions spread over the regions S1, C1 and S2. Note that, even
if d and u are always continuous, there is a jump in their derivatives while crossing
different regions.

The steepening of the profiles in figures 6(e) and 6(f ) suggests that the solution is
tending towards a state in which it has become multivalued and thereafter forms a
shock wave. In figure 6 L < 4/3 and so as discussed above, we anticipate that this
shock wave occurs within the region C1. Moreover, breaking occurs along the curve
γ1 (by which we mean approaching the curve γ1 from the region C1) where both
the x- and t-derivatives of u and d are discontinuous. Far from this being a special
case, similar behaviour was observed by Greenspan (1958) for waves propagating
shoreward on a plane frictionless beach. To find where the shock first occurs, we
study the coordinates transformation from the (α, β)-plane to the (x, t)-plane in a
generic complex region. We have⎧⎪⎪⎨

⎪⎪⎩
∂

∂α
=

∂x

∂α

∂

∂x
+

∂t

∂α

∂

∂t
,

∂

∂β
=

∂x

∂β

∂

∂x
+

∂t

∂β

∂

∂t
,

=⇒

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t
=

1

J

∂x

∂β

∂

∂α
− 1

J

∂x

∂α

∂

∂β
,

∂

∂x
= − 1

J

∂t

∂β

∂

∂α
+

1

J

∂t

∂α

∂

∂β
,

(3.41)

where J = (∂x/∂β) (∂t/∂α) − (∂x/∂α) (∂t/∂β) is the Jacobian of the transformation.
Such a transformation does not apply in simple wave regions since one of the state
variables (α or β) is identically constant. A continuous wave arising in a hyperbolic
quasi-linear system of equations (such as the NWSE) loses its continuity and becomes
a shock wave when its derivatives becomes unbounded. From (3.41), we observe that
this happens at the first time instant at which J =0. After such an instant we
can no longer apply the coordinate transformation in (3.41) since the one-to-one
correspondence between the (α, β)-plane and the (x, t)-plane is lost. Using (2.9a, b),
we obtain J = 2 c (∂t/∂α) (∂t/∂β) and, therefore, J = 0 if and only if c = 0, ∂t/∂α =0
and/or ∂t/∂β =0. The first condition confirms the shoreline to be a singular curve
for the NSWE while the other conditions give the breaking conditions in the complex
region.
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Figure 6. The depth d and velocity u as functions of x at different times for L = 1: (a) and
(b) represent d and u at t =1/4; (c) and (d ) represent d and u at t = 1/2; (e) and (f ) represent
d and u at t = 2/3.

From (3.39) we evaluate

∂t

∂α

∣∣∣∣
α=2

=
−3

2(2 − β)
t(2, β) +

2

(2 − β)3/2
− 3

4(2 − β)3/2

∫ β

−2

t(2, b)

(2 − b)1/2
db. (3.42)

This may be further simplified by substituting t(2, β) from (3.25) to obtain

∂t

∂α

∣∣∣∣
α=2

=
1

10(2 − β)5/2
[6(2 + 5β) − 15(10 + β)t1] +

2

5
. (3.43)
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Figure 7. The value of the characteristic variable βs and the time ts at which the multivalued
region starts within C1 as a function of the dimensionless length of the flume, L. Note that
the multivalued region only starts within C1 when 0.461 <L< 4/3.

Thus we may determine when ∂t/∂α(2, β) first vanishes, marking the start of the
multivalued region. We plot the variation of this value of β ≡ βs and the corresponding
time of the shock formation ts = t(2, βs) as functions of the dimensionless length of
the tank, L (figure 7). We note that when L = 4/3 the derivative ∂t/∂α first vanishes at
βs = −2 (ts = t1 = 2/3), which is in agreement with the above analysis. Smaller values
of L lead to the multivalued region starting in C1: when L =1, ∂t/∂α vanishes at
βs = −1.614, which corresponds to ts = 0.671. Thus the profiles plotted in figure 6 at
t = 2/3 are close to the first time at which this method of solution breaks down and
discontinuous solutions form.

We also note that when L < 0.4607 there is no value of βs for which ∂t/∂α vanishes
on the characteristic α =2. This indicates that there is no shock formed within the
region C1. However, there is a stronger constraint on the formation of a multivalued
region in C1: we require the multivalued region to form before the curve γ1 reaches
the endwall (x = L) (i.e. ts � tw). We calculate that the limiting case of ts = tw occurs
when β = −0.5879, t1 = 0.2653 and ts = tw =0.7060. Thus for L < 0.5306, we determine
that no shock forms within C1 before the region interacts with the endwall and forms
more complicated pattern of simple and complex wave regions which is beyond the
scope of this paper.

4. A shock solution
In this section, we introduce and illustrate an analytical expression for the shock

motion when L > 4/3. In this situation, the shock is generated by the coalesence
α-characteristic curves while the β-characteristics jump across the discontinuity. This
implies that behind the shock we can no longer assume β = −2 and we have to
assume the existence of a complex wave region Cs . As will be demonstrated in § 4.1,
such a region is bounded by the shock itself and by the β-characteristic crossing
the starting breaking point Ps (hereinafter denoted by δs). A simple sketch of Cs is
drawn in figure 8. In front of the shock is the region U1 where α =2 and β = −2. The
following relations are used to define the jump of the physical quantities, expressing
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Figure 8. Sketch of the shock wave (thick solid line) in the (x, t)-plane, the β-characteristic
through Ps ≡ (4/9, 2/3) (dashed line) and the regions U1, S1 and Cs . The dotted line denotes
the α-characteristic curve used in the construction of the solution using Riemann’s method. In
this plot L = 3.5.

conservation of mass and momentum across the shock:

s [d] = [Q], (4.1a)

s [Q] =

[
d2

2
+

Q2

d

]
, (4.1b)

where s = dxs/dt is the shock velocity, Q = ud and the bracket symbol [f ] = f2 − f1

represents the jump across the shock (subindices 1 and 2 indicating the quantity in
front and behind the shock, respectively). Then, since Q1 and d1 are in U1, we also
have Q1 = −t and d1 = 1.

4.1. Preliminary results

It is very simple to show that the shock wave has zero strength at Ps , that is, all
the quantities are continuous at Ps . First of all, we note that the shock wave has
to develop inside the multivalued region, that is, between the α-characteristic γ1 and
the envelope in (3.12). At Ps these curves both give ẋ = 1/3 and then s = 1/3. We
substitute [Q] from (4.1a) into (4.1b) and solve for d2: the only positive solution is
d2 = 1 = d1. So we have [d] = [Q] = 0. These results have very important consequences.
First of all no β-rarefaction fan starts from Ps since [β] = [u] − 2[c] = 0 and, then,
the slope of the β-characteristic changes continuously behind the shock. This also
implies that the β-characteristic crossing Ps (hereinafter denoted by δs) is known and
is given by (3.7) along with the initial condition x = 4/9 at t = 2/3. The absence of
rarefaction waves confirms our initial assumptions on the boundary of the region Cs .

4.2. A hodographic approach

We assume the quantities just behind the shock to be continuous and employ the
hodograph variables introduced by Carrier & Greenspan (1958) to represent them
in the phase space. We define d = σ 2/16 and u = λ/2 − t . (Note that the quantities
in front of the shock originate from the uniform wave region U1 given by the
point (σ, λ) = (4, 0).) This new set of variables offer advantages in simplifying the
analysis that follows; in particular we find that the trajectory of the shock wave
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is parameterized by sole variable σ . The new variables are related to the original
characteristic quantities by

α =
λ + σ

2
, β =

λ − σ

2
. (4.2)

Using the variables σ and λ, the starting set of equations (2.4) becomes⎧⎪⎨
⎪⎩

∂x

∂σ
− u

∂t

∂σ
+ c

∂t

∂λ
= 0

∂x

∂λ
− u

∂t

∂λ
+ c

∂t

∂σ
= 0 ,

⇒

⎧⎪⎪⎨
⎪⎪⎩

∂ξ

∂σ
=

λ

2

∂t

∂σ
− σ

4

∂t

∂λ

∂ξ

∂λ
=

λ

2

∂t

∂λ
− σ

4

∂t

∂σ
,

(4.3)

where ξ = x + t2/2. Extracting s from (4.1a) and substituting in (4.1b), we obtain

[Q]2 = [d]

[
d2

2
+

Q2

d

]
. (4.4)

Since we have

d1 = 1, u1 = −t, d2 =
σ 2

16
, u2 =

λ

2
− t, (4.5)

substituting such expressions in (4.4) leads to the following curve in the (σ, λ)-space:

λ(σ ) = ±
√

2 σ 2 + 32 ( σ 2 − 16 )

16 σ
. (4.6)

Substituting back into (4.1a), we obtain

s = ± σ
√

2 σ 2 + 32

32
− t. (4.7)

Since Ps corresponds to (σ, λ) = (4, 0) and, at this point, t = 2/3 and s = 1/3, we
deduce that the positive root is the right choice. Finally, we can write (4.7) as follows:

dxs

dt
=

σ
√

2 σ 2 + 32

32
− t. (4.8)

Since all the quantities are defined along the curve in (4.6), we can consider σ as an
independent variable and this yields

dxs

dσ
=

[
σ

√
2 σ 2 + 32

32
− ts

]
dts

dσ
, (4.9)

or, in a more compact form

dξs

dσ
=

[
σ

√
2 σ 2 + 32

32

]
dts

dσ
. (4.10)

Since dξ/dσ = ∂ξ/∂σ + λ̇ ∂ξ/∂λ, where λ̇= dλ/dσ , then combining (4.3) with (4.10),
we obtain

dts

dσ
= − σ 2

2
√

2σ 2 + 32

(
∂t

∂λ
+ λ̇

∂t

∂σ

)
. (4.11)

To solve the problem, we need to know ∂t/∂σ and ∂t/∂λ evaluated along λ(σ ). For
this purpose, we use the Riemann’s method described in Hogg (2006).
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4.3. Solution

We consider the triangle ABPs shown in figure 8. The curve AB is an α-characteristic
curve (the specific value of α is used as a parameter, as explained below), while the
curve BPs is the β-characteristic passing through Ps (along it β = −2 and α is assumed
to be known as well). Finally, the curve PsA represents the shock curve, which forms
the right-hand boundary to the complex region Cs (i.e. along the curve λ(σ ) in (4.6)).

However, to use the Riemann’s method, we have to express the curve λ(σ ) (given
in (4.6) as function of σ only) as function of either α or β . Using (4.2) and (4.6), it is
easy to show that dα/dσ > 0. Then we choose α as the independent variable assuming
the curve λ(σ ) to be expressed through a curve β(α) in the (α, β)-plane. Finally, using
(3.34), we get ∫

ABPs

ω =

∫
AB

ω +

∫
BPs

ω +

∫
PsA

ω = 0. (4.12)

The coordinates of points A, B and Ps in the hodograph plane are

A = (α, β(α)), B = (α, −2), Ps = (2, −2). (4.13)

Using the boundary condition in (3.32), the first integral gives∫
AB

ω =

∫ −2

β(α)

U |
a=α

db =
t(α, −2) − B(α, β(α); α, −2) t(α, β(α))

2
, (4.14)

while the second one is∫
BPs

ω = −
∫ 2

α

V |
b=−2 da =

t(α, −2) − B(2, −2; α, −2) t(2, −2)

2
. (4.15)

The last integral is evaluated along the curve β = β(α) and, therefore, it is given by∫
PsA

ω =

∫ α

2

[U ḃ − V ]|b=b(a) da, (4.16)

where ḃ = db/da. The global result is

t(α, −2) − 1

2
[B(2, −2; α, −2) t(2, −2) + B(α, β(α); α, −2) t(α, β(α))]

+

∫ α

2

[U ḃ − V ]
∣∣∣
b=b(a)

da = 0. (4.17)

First we note that t(α, −2) and B(2, −2; α, −2) are taken along the characteristic curve
δs and, hence, they are known. We denote them with f1(α) and f2(α), respectively.
Moreover we also know that t(2, −2) = 2/3. Then (4.17) becomes

f1(α) − f2(α)

3
−

B
(
α, β(α); α, −2

)
t
(
α, β(α)

)
2

+

∫ α

2

[
U ḃ − V

] ∣∣∣
b=b(a)

da = 0. (4.18)

Now we need to express such equation as a function of σ . The functions f1(α) and
f2(α) may be written as f̂ 1(σ ) = f1(α(σ )) and f̂ 2(σ ) = f2(α(σ )) since α(σ ) is known
along the shock curve. All the other quantities are directly defined along the shock
curve and, therefore, they can be written as functions of σ using (4.2) together with
(4.6). In particular we have t(α, β(α)) ≡ ts(σ ). In order to parameterize the integration
along the shock inside the integral (4.16), we introduce the variables ρ and τ such
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that, according to (4.2), we have

B(a, b; α, −2)
∣∣∣
b=b(a)

= B

(
τ (ρ) + ρ

2
,
τ (ρ) − ρ

2
;
λ(σ ) + σ

2
, −2

)
. (4.19)

It follows immediately that

B
(
α, β(α); α, −2

)
= B

(
λ(σ ) + σ

2
,
λ(σ ) − σ

2
;
λ(σ ) + σ

2
, −2

)
≡ B(σ ), (4.20)

and thus we may write∫ α

2

[Uḃ − V ]|b=b(a)da =

∫ σ

4

[
U

db

dρ
− V

da

dρ

]
dρ

=

∫ σ

4

{
ts

2

[
∂B

∂τ
+ τ̇

∂B

∂ρ
− τ̇

3B

ρ

]
− B

2

[
∂t

∂τ
+ τ̇

∂t

∂ρ

]}
dρ. (4.21)

Further, denoting

F (σ ) = f̂ 1(σ ) − 2

3
f̂ 2(σ ) , D(σ ) = B(σ )

[
1

2
−

√
2σ 2 + 32

σ 2

]
, (4.22)

using (4.11) and integrating by parts, we can rewrite (4.18) in the following way:

ts(σ ) =
F (σ )

D(σ )
+

1

D(σ )

∫ σ

4

ts

{
1

2

[
∂B

∂τ
+ τ̇

∂B

∂ρ
− τ̇

3B

ρ

]
− d

dρ

[
B

√
2ρ2 + 32

ρ2

]}
dρ .

Now simplifying the argument of the integral, we can write

ts(σ ) =
F (σ )

D(σ )
+

1

D(σ )

∫ σ

4

ts

{
c1(ρ)

∂B

∂τ
+ c2(ρ)

∂B

∂ρ
+ c3(ρ) B

}
dρ. (4.23)

where

c1(ρ) =
ρ4 − 8ρ2 − 128

4 ρ4
, c2(ρ) =

ρ4 − 8ρ2 − 128

8ρ2
√

2ρ2 + 32
, c3(ρ) = −3ρ4 + 8ρ2 − 128

8ρ3
√

2ρ2 + 32
.

Equation (4.23) is a Volterra equation of the second kind and it can be solved by
successive iterations. We note that some care is required in its numerical solution
because F, D → 0 as σ → 4 and for consistency we require that ts = 2/3 at σ = 4.
We demonstrate in appendix B that there are no singularities in the integral equation
and that its formulation is consistent with the initial condition.

All the results presented up to here, are valid as long as the shock motion depends
only on regions S1 and U1. This occurs during the first stages of evolution but after
a sufficiently long time, the shock is also influenced by other regions and thereafter
solution (4.23) is no longer valid. The construction can fail in the following two ways.

First, the complex wave region, C1 is bounded by the curve δs and when this
β-characteristic reaches x = 0, it is reflected as a forward-propagating α-characteristic,
which eventually reaches the shock wave at the point P3. Thereafter the shock starts
to self-interact since it meets the β-characteristics reflected at the t-axis that have
previously crossed the shock. As a consequence (4.23) holds up to P3 while a more
complicated expression is needed for the further shock evolution. We may determine
the point P3 in the (σ, λ)-plane by first finding when the characteristic, δs first reaches
x = 0. From the results of appendix A, this may be calculated as t = t2 = 0.9608. In
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Figure 9. The trajectory of the shock curve in the (x, t)-plane (thick solid line), together with
the β-characteristic passing, δ), (dashed line), the α-characteristic, γ1 before Ps (thin solid line)
and after Ps (dotted line) and the envelope of multiple curve (dashed-dotted line). In these
plots, L = 3.5.

terms of the characteristic variables, β = −2, while α ≡ α2 = 2(t2 + 1) = 3.9216. Thus
in the (σ, λ)-plane

P2 = (σ2, λ2) = (5.9216, 1.9216) . (4.24)

Thereafter we integrate along the α-characteristic to find where it intersects the shock.
This occurs at point P3, which is given by

P3 = (σ3, λ3) = (5.8681, 1.9719), ⇔ P3 = (α3, β3) = (α2, −1.9481). (4.25)

The second way in which the constructed solution (4.23) may fail is if the shock
wave crosses the curve δ1 before reaching the point P3. After that, the front of the
shock wave is influenced by region S2. The point P3 is given by (0.7016, 1.6207) in the
(x, t)-plane. Since the curve δ1 passes through this point when L = 3.6356, we deduce
that the construction fails by the shock waves reaching the simple wave region S2 if
4/3 < L < 3.6356, whereas for L � 3.6356 the shock wave begins to self-interact.

In all figures that follow, we calculate the solutions when L = 3.5 so that eventually
this construction fails via the first of the possibilities described above. In figure 9 we
show the shock curve as obtained by the numerical solution of (4.23). The computed
solution is very accurate since it satisfies the shock relations with a maximum error
of about 3×10−5. In figure 9 we also show the shock path together with the envelope
given in (3.12) and the continuation of γ1. It is evident that the shock ‘cuts’ the
multivalued region M in two parts: the part in front of the shock is included in U1,
the part behind is included in Cs .

Figures 10 (a) and 10(b) show the solution ts(σ ) of (4.23) and the associated
solution xs(σ ) obtained through (4.9). Moreover, figures 10 (c), 10(d ) and 10(e) show
respectively the jump of the quantities d , u and Q along the shock wave while in
figure 10(f ) the shock velocity s is plotted. It is evident that the shock is growing in
magnitude as it develops and that its forward motion is progressively slowing. Finally,
to illustrate clearly the shock evolution, in figure 11 the discontinuous solutions of d

and u are plotted at fixed times. At t = 2/3 the shock wave is just generated while
at t =0.9608 the discontinuity is completely evident inside the domain. We chose
t = 0.9608 since for t > 0.9608 the region C2 starts to develop near the left rigid wall.
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Figure 10. (a, b) The trajectory of the shock as functions of σ ; (c, d, e) the jumps of d , u and
Q across the shock wave and (f ) the shock velocity s as a function of time. In these plots,
L = 3.5.

5. Summary and conclusions
In this paper we have constructed analytical solutions for the two-dimensional

motion of an initially static shallow layer of fluid within an inclined tank. In this
description of the motion, there is a single dimensionless parameter L which measures
the length of the tank relative to the initial depth of fluid and the inclination of the
tank (see (2.6)). The magnitude of this parameter determines the character of the fluid
motions that occur en route to attaining the final static state when the free surface
has become horizontal.
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Figure 11. The depth d(x, t) and velocity u(x, t) of the shallow layer as function of distance
along the flume x, at times (a, b) t = 2/3 and (c, d ) t = 0.9608 for L = 3.5

In these calculations we have shown how the initial stages of the motion feature
uniform and simple waves regions within which one, or both of the characteristic
variables are constant. Here, the velocity and height fields are evaluated relatively
straightforwardly using the method of characteristics. However the presence of the
endwalls of the flume introduce further complexities into the motion and thus the
flow features regions within which both characteristic variables vary. Nevertheless
we may still calculate the depth and velocity by adopting hodograph variables and
implementing the Riemann construction for the solution to the governing equations.
This follows the approach of Hogg (2006) for dam-break flows over horizontal
surfaces in which the presence of an impermeable back wall also strongly modified
the flow.

We find that the solution develops discontinuities (bores) at relatively early times.
This emerges from the coalescence of different forward-propagating characteristics
and its precise location of initial formation depends upon L. Tracking the evolution
and motion of the discontinuity requires special treatment; in this contribution
we have demonstrated how to construct the solution either side of the moving
discontinuity and how to link them by applying jump conditions to determine the
evolution of its location and magnitude. Additionally we have shown that the flow
develops a moving interface between the wet and dry regions at the end of the flume
and we have calculated when this forms and how the motion subsequently progresses.
Our description is limited to relatively early dimensionless times. Subsequent motion
could be modelled using this construction, but careful account would need to be
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made of the boundaries between the regions and the reflections that occur when
characteristics reach the boundaries.

Shallow water equations have been widely used in near-shore hydrodynamics and
for modelling the nonlinear sloshing of containers partially filled with liquid. The
numerical integration of the equations can be a significant challenge since the solutions
may feature discontinuities and moving contact points between wet and dry regions.
It is therefore vital to have analytical solutions, against which the numerical solutions
can be validated. As well as providing insight into nonlinear wave motion, this study
adds significantly to the available test cases, because it provides analytical solutions to
an experimentally realizable configuration, which is spatially and temporally varying
and which generates bores after some initial development.

Appendix A. Characteristic curves within region S1

We integrate (3.7) by first defining a new variable q ≡ q(t) such that

x =
(t + 2)2

16
(1 − q2). (A 1)

Thus differential equation (3.7) becomes

q

q2 + q − 6

dq

dt
= − 1

(t + 2)
, (A 2)

which, once integrated, gives the following implicit solution:(
q − 2

q2 − 2

)2/5 (
q + 3

q2 + 3

)3/5

=
(t2 + 2)

(t + 2)
, (A 3)

where t2 and q2 are the initial conditions. Since all the δ-curves start from inside S1 on
the curve γ1, the initial values x2 and t2 are linked by the relationship, x2 = t2 − t2

2/2.
Then, we obtain

q2 =
1

(t2 + 2)

√
(t2 + 2)2 − 16 x2 =

|3 t2 − 2|
t2 + 2

. (A 4)

Finally, because 3t0 − 2 � 0, we find

[
√

(t + 2)2 − 16x − 2(t + 2)]2 [
√

(t + 2)2 − 16x + 3(t + 2)]3 = 29 (5t2 + 2)2. (A 5)

Since it is not possible to get an exact explicit analytical solution of (3.7), we try to
obtain an approximate solution by expanding (A 5) in a neighbourhood of t = t2.
This will be useful for the numerical solutions obtained in this paper. First, defining
the new variables y = y(t) and z = z(t) such that:

y =
√

(t + 2)2 − 16x, z = t − t2, (A 6)

we rewrite (A 5) as follows:

[y − 2z − 2(t2 + 2)]2 [y + 3z + 3(t2 + 2)]3 = 29 (5t2 + 2)2. (A 7)

Then, we assume the following expansion for y:

y = a0 + a1

√
z + a2z + a3z

3/2 + a4z
2 + O(z5/2), (A 8)
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Figure 12. Solutions of (3.7): numerical solution (solid line) and the approximate solutions
x(−) (dotted-dashed line) and x(+) (dashed thick line).

where a0 = 2 − 3t2 in virtue of the chosen initial condition. Substituting (A 8) into
(A 7) and collecting together the same orders of magnitude of

√
z, we get

a1 = a3 = a5 = 0, a2 =
9t2 + 10

2 − 3t2
, a4 = −24

5t2 + 2

(2 − 3t2)3
, (A 9)

for t0 < 2/3 and

a0 = 0, a1 = ± 4
√

2, a2 = −2

3
, a3 = ± 7

18

√
2, a4 =

7

270
, (A 10)

for t0 = 2/3. Note that in the latter case we find two distinct solutions. This is
consequence of the generation of the shock wave at t = 2/3. Substituting (A 9) into
(A 8), we find approximate solution (3.8). However, substituting (A 10) into (A 8), we
find two solutions

x(±)(t) =
(t + 2)2

16
− 2

(
t − 2

3

)
±

√
2

3

(
t−2

3

)3/2

− 5

12

(
t − 2

3

)2

+ O

((
t − 2

3

)3)
. (A 11)

One of these solutions is spurious, arising as a consequence of the shock wave
singularity. A simple way to determine which of the solutions is to be retained is to
compare x(+) and x(−) with the numerically evaluated implicit solution (A 5) (figure 12).
Here we see that x(+) is the relevant solution as it is almost indistinguishable from
the exact numerical solution.

Appendix B. Regularity of Volterra equation (4.23)
To verify that (4.23) has no singularities, we need to study its behaviour when the

shock just starts, that is, for t → 2/3. Indeed, such a limit is not trivial since t → 2/3
corresponds to σ → 4 and in this case we have both D(σ ) → 0 and F (σ ) → 0.
Keeping in mind that B(σ ) → 1 as σ → 4 and using a Taylor expansion, it is easy to
show that

D(σ ) =
3

16
(σ − 4) + O((σ − 4)2). (B 1)
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Now denoting I (ρ; σ ) = {c1(ρ) Bτ + c2(ρ) Bρ + c3(ρ) B}, we also obtain∫ σ

4

ts(ρ) I (ρ; σ )dρ = − 1

8
(σ − 4) + O

(
(σ − 4)2

)
. (B 2)

Finally we need to evaluate F (σ ) in the regime |σ − 4| � 1. Using (3.33) and (4.2),
we establish that α = 2 + (σ − 4) + · · · and thus

f̂ 1(σ ) =
2

3
+ O((σ − 4)2) , f̂ 2(σ ) = 1 − 3

8
(σ − 4) + O((σ − 4)2). (B 3)

Hence F (σ ) = (σ − 4)/4 + · · · and then

ts =
F

D
− 1

D

∫ σ

4

tsI (ρ; σ ) dρ =
2

3
+ O ((σ − 4)) , (B 4)

and this is consistent with the initial time ts = 2/3 at σ =4.
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